Physical Sciences \| Jim Tilley

Will an old problem yield a new insight?

Perhaps an elegant proof of the 4-colour theorem?

The 4-colour problem is one of the most famous mathematical problems. It resisted proof for more than a hundred years before finally succumbing; in the end, there was a valid proof, bu one that relied on more than time. Jim Tilley's research suggests that a dramatic simplification might ultimately be possible. He has discovered a property, Kempe-locking, that a minimum counterexample to the 4 -colour theorem must exhibit and has formulated a conjecture, based on extensive
investigations, that the Birkhoff diamond is the sole fundamental Kempe-locking configuration.

Figure 1. A proper colouring of the
planartriangulation on 12 vertices Planar triangulation on 12 vertices
thter eresents the icosahedron.
The single red-blue K Ke The single red--blue empe
is shown highlighted.

Graph colouring involves assigning colouring of its vertices.) Only planar abels, or colours, to the vertices f a mathematical object known as a graph. The 4 -colour problem provided one of the original motivations theory. Graph colouring is used in many realry. Graph problems, such as minimising conflicts when scheduling sports events, planning examination timetables and organising seating plans, even for CCTV camera placement in a building with many corners in order to minimise camera overlap. It also provides the foundation for Sudoku puzzles.

THE 4-COLOUR PROBLEM

Francis Guthrie, a student of the famous British mathematician and logician Augustus De Morgan, posed the 4-colour problem in 1852. He formulated the problem with respect to maps that satisfy certain conditions, such as not containing any holes and having every region (e.g country or state) connected so that contiguous parts. Guthrie claimed that for such maps it would never take more than four colours to colour the map such that no two neighbouring regions were the same colour.

Nowadays, the 4 -colour problem is expressed in terms of graphs, and instead of colouring regions in maps, one colours vertices in graphs. All existing proofs of the 4 -colour theorem demonstrate that a minimum counterexample cannot exist. (A minimum counterexample is the
smallest plan smallest planar graph
that requires more that requires more
than four colours than four colours
for a proper
colouring of its vertices.) Only planar graphs that are triangulations need
to be considered, as any graph that is to be considered, as any graph that is not a triangulation can be turned into one by inserting edges. If the resulting riangulation is 4 -colourable, hen 1 is highly useful to be able to restrict one's scrutiny to triangulations.

AN EARLY ATTEMPT AT PROOF
 Of those who offered a proof, Alfred

 Bray Kempe, an English barrister and amateur mathematician, was the person whose reputation was most tainted by his failed effort. He announced his success in 1879 and his 'proof' was published in the American Journal of Mathematics. Eleven years later, however, another English mathematician, Percy Heawood created a map that he 4 -colored up to the final region in such a way that Kempe's method failed for that final region. Despite his failure, Kempe left a useful tool - a Kempe chain. It reachable from any other by a path alon edges) subgraph in which all vertices use exactly two colours. Kempe chains have proven instrumental in colouring and re colouring graphs. See Figure 1.
PROOF AT LAST

The first valid proof was announced in 1976 by Kenneth Appel and Wolfgang Haken. It required over a thousand hours of computer time to verify particular aspects of their argument. This notion of relying on computer code, potentially ontaining human-induced errors (and their code did!!, rather than a 'human proof, has not satisfied a great part of the mathematical community. Appel and structure, but the details wis is or

The proof was refined in 1996 by a team of four mathematicians: Robertson, Sanders, Seymour, and Thomas, but they still relied on computer code to complete their proof. In 2010, Steinberger offered another variation. However, there is still no completely satisfying answer as to why the 4 -colour theorem is true (Once the conjecture was proved, it gained the status of a 'theorem.')

THE SEARCH FOR AN

ALTERNATIVE PROO

The 4 -colour problem is so easy to articulate and comprehend that it has attracted the interest of many thousands of amateur mathematicians, all believing they can find a simple classical proof and thus become famous. Jim Tilley's father, a physicist and principal of Canada's
Royal Military College from 1978-1984, Royal Military College from 1978-1984,
was one such dreamer. Whenever he felt was one such dreamer. Whenever he fer would ask his son, Jim, to check his work Jim always found a flaw. Yet, despite his initial scepticism that his father's efforts would ever bear fruit, he became infected with an enthusiasm for the 4 -colour problem and began to study it intensely.

KEMPE-LOCKING

Jim Tilley's research led to his discovering a new property that a minimum counterexample to the 4 -colour theorem must exhibit. He named it 'Kempelocking.' He realised that it was likely to be incompatible with another property that a minimum counterexample must exhibit - viz., how connected a graph is (how many vertices must be removed Tille's Kempe-locking is a property
associated with an edge in a triangulation. The notion starts with deleting an edge xy between adjacent of the resulting graph in which the colours of x and y are the same, ther is no sequence of colour-interchanges on Kempe chains that causes the colour of x to differ from the colour of y, then the original triangulation is said to be Kempe-locked with respect to the edge $x y$. Tilley proved that a minimum counterexample to the 4 -colour theorem has to be Kempe-locked with respect to every one of its edges; every edge in a minimum counterexample must have this colouring property.
ntire map will be 4-colourable, Thus, a minimum counterexample cannot contain hat particular configuration. It has come be known as the Birkhoff diamond liley found ha kempe-locke edge al so the endpoints of the graph version fa Birkhoff diamond. See Figure 2.

Not having encountered any Kempelocking configuration without a Birkhoff liamond, he conjectured that the Birkof iamond is the only fundamental empe-locking configuration, one that configuration as a subgraph. However, Tilley found that he could not prove

It would be an astounding simplification if the Birkhoff diamond alone is the key to 4-colourability.
Kempe-locking is a particularly restrictive condition that becomes more difficult to satisfy as a triangulation gets larger. Tilley set out to discover if there is anything common to triangulations that have Kempe-locked edges. His earliest search for Kempe-locking led him to the Birkhoff diamond.

THE BIRKHOFF DIAMOND
in 1913, G. D. Birkhoff discovered that a certain configuration of ten countries in a map (a boundary ring of six countries that encloses a set of four countries) has an important property. If that configuration is present in a map and removed is 4 -colourable, then the

his critical conjecture. It was frustrating because, if true, the conjecture would directly prove the 4 -colour theorem. triangulation would have to contain a Birkhoff diamond subgraph, but if it did couldn't be a minimum counterexample.)

AN OVERWHELMING

SUPPORTING CASE

Instead of proving his conjecture, Tilley did the next best thing. He decided to play the role of an experimentalist and build an overwhelming case to support his conjecture. He divided all relevant planar triangulations into two classes: those in which at least four vertices have to be removed before the graph whiphart (4-connected) and those in removed before the graphs fall apart (5-connected). See Figure 3. Helpful in Tilley's extensive search was that he had to examine only one member of each isomorphism class (graphs

Figure 2

Figure 2. The Birkhoff diamond configuration with endpoint vertices x and y.
Figure 3. Two planar graphs, one a-connect trion

The conjecture is easily stated, understandable, and intriguing, and offers a compelling explanation for why all planar graphs
are 4-colourable.
that are structurally identical). Tilley examined all 8,044 isomorphism classes of 4-connected planar triangulations on up to 15 vertices and all 9,733 isomorphism classes of 5-connected Planar triangulations on up to 24 vertice

triangulations. Each discovered Kempelocked edge featured a Birkhoff diamond and each occurred in a 4 -connected triangulation. There were none at all among 5-connected triangulations.
Tilley expanded his search among 4-connected triangulations by examining vertices and all 158,428 isomorphism classes on 17 vertices. Computation-time limitations meant restricting his search to samples of 100,000 randomly generated non-isomorphic triangulations each for classes on 18,19, and 20 vertices. The expanded search turned up 45 additional Kempe-locked triangulations, but exactly the same results as the original search: each Kempe-locked edge in a triangulation featured an associated Birkhoff diamond.

WHERE FROM HERE?

Tilley's extensive searches easily confirmed that the Birkhoff diamond
s a fundamental Kempe-locking configuration. He has thoroughly tested his conjecture, but it remains unproven. If (or when) Tilley's conjecture is proved rue, i.e., that the Birkhoff diamond alon the key to 4 -colourabl fy, it would problem: a single configuration that xplains it ll mathematical elegance.

Proving the 4 -colour conjecture required the efforts of many promin mathematicians. Tilley's conjecture that the Birkhoff diamond is the sole fundamental Kempe-locking configuration may be even more difficult to prove. However, the experimental vidence is strong. Theorists might say 'why bother?' Tilley's answer is that insatiable curiosity will win out: "After all, the conjecture is easily stated, understandable, and intriguing, and offers a compelling explanation for why ell planar graphs are 4-colourable."

Behind the Research
Jim Tilley
E:jiimtilley@optonline.net T: $+19142429081 \quad \mathbf{W}:$ https://en.wikipedia.org/wiki/Jim_Tilley W: https://www.researchgate.net/scientific-contributions/2085779401_James_A_Tilley W: www.iimtilley.net/

References

Tilley, J. (2018). 'Using Kempe exchanges to disentangle Kempe chains.' The Mathematical Intelligencer, 40, 50-5

Tilley, J. (2018). 'Kempe-locking configurations.' Mathematics, 6(12), 309

Tilley, J. (2017). 'The a-graph coloring problem.' Discrete Applied Mathematics, 217, 304-317.

Tilley, J. (2017). 'D-resolvability of vertices in planar graphs,' Journal of Graph Algorithms and Applications, 21(4), 649661.

Tilley, J. (2018). 'The Birkhoff Diamond as Double Agent.' Working paper at arXiv.

Personal Response

What initially prompted your enthusiasm for the 4 -colour problem and led you to study it so intensely?

It was my father's obsession with the problen in his retirement and his desire to use me as the sounding board for his ideas.

What are your plans for future research in this area?
I/ I have recently reviewed a complicated paper involving a wholly different approach to the 4 -colour problem. As the paper stands, I believe it has Yet, it has promis a collaboration

Research Objectives

Jim Tilley's primary mathematical research interest is graph colouring and, in particular, finding an alternative solution to the 4 -colour problem that offers a compelling reason why th 4-colour theorem must be true

Detail

61 Meeting House Road
Bedford Corners, New York 10549-4238
USA
Bio
im Tilley earned a doctorate in Physics from Harvard University. since retiring in 2001 as Morgan Stanley's Chief Information Officer, he has published original research on graph colouring信 Against the Wind, will be released in September 2019.

