
The world has become dependent
on software. From its use in
everyday tasks, such as social

networks, to highly critical missions,
such as space exploration, software
is the mainstay that keeps our world
operating. Software development is
an error-prone activity, to say nothing
of its susceptibility to malicious
attacks. Defective software can
have embarrassing and expensive
consequences. For instance, in 2015, a
failure occurred during a daily system
refresh shut down in the point-of-sales
systems of 7,000 Starbucks stores in the
US and 1,000 in Canada. Employees
were unable to accept card payments
or register change, so they were forced
to give customers free coffee and tea.
Although the problem was fixed a
few hours later, Starbucks is reported
to have lost between three and four
million dollars that day. Another
example occurred in 2008 when the new

Heathrow Terminal 5 opened and with it
the promise of a modern, efficient, and
functioning baggage-handling system.
The system was tested prior to opening
with over 12,000 pieces of luggage and
worked perfectly. When the terminal
opened to the public, the system was
unable to cope with the vast amount of
luggage checked in every day, and only
ten days after its launch, approximately
42,000 bags were lost and more than
500 flights cancelled.

So how do we know that we can trust
software? One answer is software
reliability testing. Such tests, however,
only cover a subset of the possible
executions that the software will run
in practice. The best solution involves
including robust mathematical
guarantees in the software development
process. ‘Formal methods’ is a field
within computer science that advocates
this approach, employing rigorous

Cameleer
A deductive verification tool for OCaml

From social networking to
space exploration, software
is the mainstay that keeps
our world operating. But
how do we know that we
can trust software? Dr Mário
Pereira from the Nova School
of Science and Technology,
Lisbon, and his collaborators
have developed Cameleer, a
formal verification software
tool for OCaml-written code
that establishes mathematical
proof that a system works
according to the programmer’s
specifications. Cameleer is
the first automated deductive
software verification tool for
programs written in OCaml.

mathematical reasoning and modelling
techniques to describe and certify parts
of computer infrastructures and provide
formal software verification. In line with
this practice, Dr Mário Pereira and Dr
António Ravara from the Nova School
of Science and Technology, Lisbon, and
their collaborators have developed the
Cameleer tool, a formal verification
software tool for OCaml-written code.

DEDUCTIVE SOFTWARE
VERIFICATION
Deductive software verification involves
expressing the correctness of code
into a set of mathematical statements,
known as verification conditions, and
then proving them. Pereira explains
how this includes a logical specification
that is attached to the code. A logical
specification is a description, written
in a mathematical language, of the
properties that a program must respect
at certain points of its execution. Finally,
a verification conditions generator
algorithm is implemented. This takes
the code together with its specification
and produces the verification conditions.
Proving these mathematical statements
formally establishes that the program
execution obeys the logical properties
described in its specification. Pereira
remarks that, despite the advances
in deductive verification and proof
automation in past decades, the family
of functional languages used to construct
programs, by applying and composing
functions, has received little attention.

OCAML
One such functional language is OCaml,
an industrial-strength programming
language developed at the Inria Paris
Research Centre. OCaml is used to
implement software such as proof
assistants, automated solvers, and
compilers in industry throughout
the world by organisations including
Facebook, Bloomberg, and Issuu.
OCaml is a multi-paradigm language
supporting functional, imperative, and
object-oriented programming. It has a
robust pattern-matching mechanism, a
flexible module system, and automatic
memory management, so it can be used
to write efficient, modular programs that
maintain type-safety (preventing type
errors caused by discrepancies between
differing data types) and deals with side
effects such as memory mutation.

Even though these factors make OCaml
code a good fit for formal verification,
deductive verification has rarely been
used with OCaml programs, explains
Pereira. Moreover, prior to the Cameleer
project, an automated verification
tool that can deal directly with code
written in OCaml did not exist. Until
now, OCaml programmers choosing
to employ proof automation have had
to learn a verification-aware language,
write programs in it, and then perform

code extraction. The alternative was
to use tools that necessitated manual
proof assistance.

GOSPEL
A specification language is a formal
language used during software
development that enables precise
specification at different levels.
It is required to carry out formal
software verification. A specification
language specifies the semantics
and structure of a software system
and is used during formal verification
to provide mathematical proof
that a system works according to
prior specifications.

Together with Dr Arthur Charguéraud,
Dr Jean-Christophe Filliâtre and Dr
Cláudio Belo Lourenço (Charguéraud
et al, 2019), Pereira has developed a
specification language for OCaml, called
GOSPEL – Generic Ocaml SPEcification
Language. Since then, GOSPEL has
grown into a mature project, currently
being developed by a large consortium
of researchers which include Clément
Pascutto, Nicolas Osborne, Dr François
Pottier, and Dr Armaël Guéneau. GOSPEL

is designed to facilitate the verification
of data structures and algorithms. It has
formal semantics that are defined by
translating into Separation Logic, a form
of reasoning about programs. GOSPEL
offers a high-level, concise syntax that
is accessible to programmers who are
not familiar with Separation Logic. While
GOSPEL was developed to specify
OCaml code, it is also intended as a
generic tool for verification and testing
with features that could be applied to
other programming languages.

CAMELEER
The researchers have developed
Cameleer, the first automated deductive

The best solution involves including
robust mathematical guarantees in the

software development process.

Mário PereiraPhysical Sciences︱

Our everyday life depends on
software. It’s therefore important
that we test its reliability.

RE
D

PI
X

EL
.P

L/
Sh

ut
te

rs
to

ck
.c

om

Deductive software verification involves
expressing the correctness of code into a
set of mathematical statements.

w
hi

te
M

oc
ca

/S
hu

tt
er

st
oc

k.
co

m

www.researchoutreach.orgwww.researchoutreach.org

https://researchoutreach.org
https://researchoutreach.org

Behind the Research

Research Objectives

E: mjp.pereira@fct.unl.pt T: +351 961 980 330 W: mariojppereira.github.io
W: github.com/ocaml-gospel W: cordis.europa.eu/project/id/897873 youtu.be/frMKr-5RaD4

Detail

Dr Pereira and his collaborators developed the Cameleer
tool, a formal verification software for OCaml-written code.

Address
NOVA School of Science and Technology
Computer Science Department, Office 239
2829-516 Caparica, Setúbal, Portugal

Bio
Dr Mário Pereira has been Assistant Researcher at Nova
School of Science and Technology, Lisbon, since 2020.
In March 2022, he was appointed Tenure Track Assistant
Professor. He is affiliated with NOVA Laboratory for
Computer Science and Informatics (NOVA LINCS) at
NOVA University of Lisbon. Dr Pereira completed his PhD
in 2018, under the supervision of Jean-Christophe Filliâtre
at Université Paris-Saclay. He is an expert in deductive
software verification and functional programming and
the architect and lead developer of the Cameleer tool.
He is also an active member of the Why3 and GOSPEL
development teams.

Funding
• �H2020-EU.1.3.2. Nurturing excellence by means of cross-

border and cross-sector mobility
• �MSCA-IF-2019 Individual Fellowships (grant agreement ID:

897873)
• �VOCAL ANR-15-CE25-008

Collaborators
On the development of Cameleer:
• �António Ravara (ctp.di.fct.unl.pt/~aravara)
• �Simão Melo de Sousa (www.di.ubi.pt/~desousa)
• �Tiago Soares (student)
• �Daniel Castanho (student)
• �Carlos Pinto (student)
On the development of GOSPEL:
• �Jean-Christophe Filliâtre (www.lri.fr/~filliatr/index.en.html)
• �Arthur Charguéraud (www.chargueraud.org)
• �François Pottier (pauillac.inria.fr/~fpottier)
• �Clément Pascutto (github.com/pascutto)
• �Nicolas Osborne (www.linkedin.com/in/n-osborne)
• �Armaël Guéneau (gallium.inria.fr/~agueneau)
• �Cláudio Belo Lourenço (uk.linkedin.com/in/belolourenco)

References
Pereira, M, Ravara, A, (2021) Cameleer: A Deductive
Verification Tool for OCaml. In: Silva, A, Leino, KRM, (eds)
Computer Aided Verification. CAV 2021. Lecture Notes
in Computer Science, vol 12760. Springer, Cham. doi.
org/10.1007/978-3-030-81688-9_31

Charguéraud, A, Filliâtre, J, Lourenço, C, Pereira, M, (2019)
GOSPEL – Providing OCaml with a Formal Specification
Language. In: McIver, A, ter Beek, M, (eds) FM 2019 23rd
International Symposium on Formal Methods, Porto, Portugal,
October 2019.

Pereira, M, (2018) Tools and Techniques for the Verification
of Modular Stateful Code. Theses, Université Paris Saclay
(COmUE).

Personal Response
Why do you think it has taken until now for someone
to develop an automated verification tool that can deal
directly with code written in OCaml?

 First, let me state the existence of CFML, a wonderful
verification tool that can deal with OCaml code. However,
CFML requires a high degree of human proof interaction,
which can only be expected from formal methods experts
and not regular programmers.

Getting back to the question, the literature includes a lot
of automated verification tools, but targeting imperative
languages like C/C++, Java, and so on. I honestly believe
this is due to the fact that industry (and in particular,
critical industry) was much more into the use of imperative
(sometimes low-level) languages as they depicted functional
languages as ‘too academic’ or ‘not up to the job’ (in terms
of efficiency, flexibility, maintainability, etc). Now, the truth
is that functional languages have grown from small research
projects into fully fledged mainstream languages, hence
are gaining momentum within industry. This is therefore
the right time to invest in formal verification of functional
programs, as I believe more and more programmers will be
willing to adopt functional languages and formal methods in
their daily routines.�

Dr Mário Pereira

designed so that the other elements are
automatically generated; subsequently,
the user doesn’t have to be concerned
with the program generated in WhyML.
The user is only involved in the initial
specifying phase and in the final step of
the process where they help Why3 to
close the proof.

To evaluate Cameleer’s performance
and usability, the researchers compiled
a test suite of case studies made up
of over 1,000 lines of OCaml code.
These included implementations from
existing libraries such as numerical
programs, sorting and searching, logical
algorithms, array scanning, higher-
order implementations, and several
historical algorithms. These were all
successfully verified using the Cameleer
tool. Pereira adds that this collection of
case studies alone contributes towards
a comprehensive body of verified
OCaml codebases.

PUSHING THE FRONTIERS
OF SOFTWARE VERIFICATION
Pereira describes how the researchers
working on the Cameleer project
continue to push the frontiers of
software formal verification. They are
developing principles and tools for the
application of deductive verification to
OCaml-written code. To date they have
produced a robust tool that can handle
OCaml code and automatically verify
that it adheres to a specification written
in GOSPEL. Their work continues in their
development of ‘a powerful, usable
and mostly automated verification
framework for the OCaml community’,
making verification more accessible to
programmers using OCaml – including
those that are not verification experts.
About the next steps in their research,
Pereira says: ‘Our ultimate goal is to
grow Cameleer to a verification tool
that can simultaneously benefit from the
best features of different intermediate
verification frameworks.’

that are sent to different solvers where
formal proofs are performed.

Pereira and his colleagues chose to
develop the Cameleer verification tool
to accept programs written directly in
OCaml as input, rather than a dedicated
proof language. This means that the
user does not have to rewrite their
entire OCaml source code solely for
the purpose of carrying out formal
verification. Throughout the verification
process, the user only has to write
the OCaml code and the GOSPEL
specification. Cameleer has been

software verification tool for programs
written in OCaml. They selected
GOSPEL as the specification language
to allow them to assign readable,
rigorous, behavioural specification to
the OCaml code. Cameleer focuses on
proof automation and takes a GOSPEL-
annotated OCaml program as input.
It translates this into WhyML. WhyML
is the programming and specification
language of Why3, a platform for
deductive software verification, and
in particular automated proof. Why3’s
verification condition generator
produces a set of verification conditions

Cameleer is a powerful, usable and
mostly automated verification framework

for the OCaml community.

Photo credit: Pereira, M, Ravara, A, (2021), doi.org/10.1007/978-3-030-81688-9_31

Photo credit: Pereira, M, Ravara, A, (2021), doi.org/10.1007/978-3-030-81688-9_31

Cameleer verification workflow.

Summary of the case studies verified with the Cameleer tool.

www.researchoutreach.orgwww.researchoutreach.org

mailto:mjp.pereira%40fct.unl.pt?subject=
https://mariojppereira.github.io/
https://github.com/ocaml-gospel
https://cordis.europa.eu/project/id/897873
https://youtu.be/frMKr-5RaD4
http://ctp.di.fct.unl.pt/~aravara/
http://www.di.ubi.pt/~desousa/
www.lri.fr/~filliatr/index.en.html
https://pauillac.inria.fr/~fpottier/
https://github.com/pascutto
www.linkedin.com/in/n-osborne
http://gallium.inria.fr/~agueneau
https://uk.linkedin.com/in/belolourenco
https://doi.org/10.1007/978-3-030-81688-9_31
https://doi.org/10.1007/978-3-030-81688-9_31
http://doi.org/10.1007/978-3-030-81688-9_31
http://doi.org/10.1007/978-3-030-81688-9_31
https://researchoutreach.org
https://researchoutreach.org

