物理科学

pK一种从头计算的预测

大多数药物,连同许多其他代谢活性化合物,在水溶液中表现为弱酸或弱碱。它们的功能和治疗活性与它们在生理条件下与其他分子交换氢离子的能力有关。曼彻斯特生物技术研究所(Manchester Institute of Biotechnology)的Paul Popelier教授和Beth Caine博士开发了一种强大而准确的方法,利用简单而普遍的标准,将量子化学衍生的分子几何形状与酸度联系起来,预测未来药物的酸碱特性。值得注意的是,该方法还被用于识别和纠正错误测量的实验值。

酸度是许多化学活性化合物最重要的性质之一。如果一种化合物有转移一个或多个氢离子(H+或质子)转化为受体。在生物体内的生化过程中,受体种类通常是水分子。将酸性分子溶解在水中会增加溶液中的质子浓度。反之亦然,碱性分子从水中接受质子,从而还原氢+浓度。

弱酸和弱碱:pK一种
生物分子、代谢物和药物的化学活性与它们交换质子的能力密切相关。许多分子的生物学功能依赖于它们仔细调节质子与其他化学物质交换的能力。弱酸在水中解离的能力(即提供质子)是通过它的pK来测量的一种,这是在该溶液中的分子的一半电离(它们的质子已解离的),而分子的其余部分保持未电离的pH值(未离解)。

的PK一种可以通过实验来测量,也可以通过理论模型来预测。知道一种药的pK一种有助于预测其活动,分布,新陈代谢,排泄和毒性(呼气)简介,而无需在实验室中综合。原则上,在Silico.预测方法可以大大加快大量潜在的新药物的筛选。保罗Popelier,伯坚和他们的合作者已经开发出一种简单而有效的方法进行PK一种它利用有关分子一个质子态的三维结构的信息来模拟其作为弱酸或弱碱的行为。

分子结构和酸度
具有类似化学结构的化合物的相对酸度是由在分子(取代基)中存在的其它原子的电子性质来确定。例如,当一个弱酸释放质子,负电荷被留下,它被认为是电离。到该电荷被重新分配并且在整个分子使然稳定朝着电离的化合物的相对倾向的程度。该Popelier组表明,对于具有相似的结构和量子化学性质(电子同源物),特定键距离被强烈pKa值相关的一系列分子。因此,后一模型已被校准为一系列使用的实验数据的同源物,唯一需要的信息来计算的pK一种新的化合物的值被结合为一个稳定的分子几何距离。至关重要的是,该标准同样适用很好地现有分子和新的(从未合成)物种,提供结构相似性的足够的程度可以在它们之间进行识别。

的PK一种药物有助于预测有用的特征(其呼叫概况)。

从头键长的pK一种预测
稳定的,因此通常观察到的分子几何形状可以确定使用量子化学计算和一个称为几何优化的程序。密度泛函理论(DFT)是进行几何优化(以及一般的电子结构计算)最有力和最常用的方法之一。

知道一种药的pK一种可以预测其活性,分布,新陈代谢,排泄和毒性。

Popelier教授和他的合作者已经系统地研究DFT的应用去PK的计算一种完全基于结构描述符(平衡键长)的若干类分子。该团队开发了一个健壮的工作流,使用回归建模提供了pKas的准确估计。他们的方法被称为从头计算键长pk一种(AIBL-pK一种)已经被证明是非常可靠的:它不仅可以用来预测pK一种它还可以用于修正和确实更正pK的实验估计一种当它们受到测量误差或不准确的影响时。

相对pK一种在14种药物磺胺组的值。尽管马文的平均绝对误差的评价方面的表现还是不错的(0.65),AIBL-PK一种设法密切配合在PK中的幅度总体趋势一种整个系列的值。

PK.的相关性一种和债券的长度
AIBL-PK一种该方法已成功地应用于几类有机分子,其中一些分子构成了更复杂和生物学上重要的化合物的构建块。例如,在一项对171个酚基分子(含酸性羟基官能团与共轭苯环相连的化合物)的研究中,AIBL-pK一种已经被证明可以预测pK一种,精度小于0.5对数单位。详细统计分析分子结构与pK之间的潜在相关性一种还表明了分子中单个化学键长度(使用DFT计算)和分子的酸度之间存在非常强烈的相关性。这是一个引人注目的达到达到的结果,这表明PK一种可以使用单个分子反应性指数(粘合长度)估计值以非常好的精度。此外,这项研究表明,PK中最好的准确性一种预测可以通过分裂套类似物分子来实现到高的相关性的子集(HCSS),该基团一起分子具有相似的结构特征,尤其是在官能团释放质子的紧密附近。

该团队制定了一个强大的框架,提供了对PK的准确估计一种

一般的方法进行PK一种计算
的其中AIBL已经成功其他实例包括:苯甲酸和苯胺,羧酸,脒和胍系化合物,伯和仲磺酰胺和各种碳酸。在所有情况下,这些研究显示统计学显著键长的存在/包一种相关性,以及化学类似物组内HCSS的外观。在PK的其他方法的情况下,AIBL-PKA方法也非常成功一种预测已被证明是不可靠或难以应用的,包括含有一个以上酸性官能团的分子和表现出互变现象的体系,即同一分子存在两种快速相互转换的化学结构。在几种有机和生物化合物中可以观察到互变异构体,包括氨基酸(蛋白质的基本成分)和核酸(DNA的构建块)。

平衡键之间存在简单的线性关系的长度 - 即,对于一个分子,它的pKa值的稳定的布置在此示出为在苯酚衍生物的C-O键的原子之间的距离,。

AIBL-PK的新应用一种方法
经验预测者需要实验数据来训练他们的模型。对于化学空间的区域,训练集中没有很好地表示,这些方法的准确性迅速下降。最近与拉萨有限公司合作进行的一项研究表明,AIBL方法可以为这个问题提供解决方案。使用AIBL-pK一种建立了不同类型的碳酸模型(拉萨基于经验的模型在化学空间中表现最差的区域),Popelier教授和他的同事构建了假设的化合物并预测了它们的pK一种价值观。这些假想的化合物已被故障地构建以增加培训集的碳酸中发现的原子类型的多样性。令人兴奋的是,它们的结果表明,向训练集添加了这样的物种,都增强了拉萨预测工具​​的准确性,并使其更广泛地适用。Popelier教授及其合作者的工作旨在进一步扩展,并记录AIBL-PK的可靠性和准确性一种方法来处理日益复杂的系统。进一步的工作将探索该方法如何应用于单萜类化合物,从而帮助合理设计新的单萜类合成酶。

高度相关的线性关系C-N键长和PK之间存在一种在guanidine-containing化合物。

个人反应

你的工作中最引人注目的发现之一是,一种复杂的化学现象,即弱酸在水中的解离,可以用一个简单的标准来理性化,该标准基于一个质子态上容易计算的结构信息。AIBL-pK的前景如何一种药物发现中的方法,以及它目前的适用性或可能受益的潜在改进存在挑战吗?

在许多情况下,AIBL方法在药物发现中是有用的。在先导优化期间,实验pK一种通常对一系列合成的类似物进行测量。我们的方法利用这些信息,加上量子化学信息,得到了一个不仅能准确预测pK的模型一种随着结构的变化,也能识别实验值是否被错误测量。这种实验的修正已经被证明了很多次,最近的例子是上市的磺胺/磺酰脲类药物塞来昔布、格列美脲和格列吡嗪。因此,除了预测新的化合物,AIBL-pK一种方法可用于检查一组PK的一致性一种测量值,从而作为实验异常值的整流器。

AIBL的警告是它需要校准,并且每个线性模型具有限制通过实验数据的可用性的适用范畴。此外,量子化学计算比其他方法更耗时,例如拉萨的方法。它们的方法使用2D分子指纹来定义分子结构(没有量子化学输入特征)并在几秒钟内返回预测值。正如我们所提到的,AIBL潜力的一个激动人心的示例是喂养具有理论,高度准确的数据的快速实证模型。这已经证明已经显示出提高Lhasa方法的准确性,添加了少于150个假想化合物,同时仍然向用户提供非常短的时间段的答案。

本文是在研究团队的批准下创建的。这是一个合作制作,由那些特色的支持,免费援助,全球分发。

想阅读更多类似的文章吗?

注册到我们的邮件列表,阅读对你最重要的话题。
报名!

留下一个回复

您的电子邮件地址不会被公开。必填字段已标记

感谢您对加入我们的邮件列表和社区的兴趣。在下面,您可以选择您希望我们如何与您互动,我们会随时了解我们的最新内容。

您可以通过点击来自我们收到的任何电子邮件的页脚中的取消订阅链接来更改您的偏好或取消订阅,或通过联系我们audience@www.graceymay.com.在任何时候,如果您对如何处理数据有任何疑问,请查看我们的隐私协议。

您想了解更多关于我们服务的信息吗?

我们使用MailChimp作为我们的营销自动化平台。通过点击下面提交此表格,您确认您提供的信息将被转移到MailChimp进行处理隐私政策条款。

订阅我们的免费刊物